ON THE FIELD OF DEFINITION OF p-TORSION POINTS ON ELLIPTIC CURVES OVER THE RATIONALS
ثبت نشده
چکیده
Let SQ(d) be the set of primes p for which there exists a number field K of degree ≤ d and an elliptic curve E/Q, such that the order of the torsion subgroup of E(K) is divisible by p. In this article we give bounds for the primes in the set SQ(d). In particular, we show that, if p ≥ 11, p 6= 13, 37, and p ∈ SQ(d), then p ≤ 2d + 1. Moreover, we determine SQ(d) for all d ≤ 42, and give a conjectural formula for all d ≥ 1. If Serre’s uniformity problem is answered positively, then our conjectural formula is valid for all sufficiently large d. Under further assumptions on the non-cuspidal points on modular curves that parametrize those j-invariants associated to Cartan subgroups, the formula is valid for all d ≥ 1.
منابع مشابه
On Fields of Definition of Torsion Points of Elliptic Curves with Complex Multiplication
For any elliptic curve E defined over the rationals with complex multiplication (CM) and for every prime p, we describe the image of the mod p Galois representation attached to E. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definiti...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملExplicit Classification for Torsion Subgroups of Rational Points of Elliptic Curves
The classification of elliptic curves E over the rationals Q is studied according to their torsion subgroups Etors(Q) of rational points. Explicit criteria for the classification are given when Etors(Q) are cyclic groups with even orders. The generator points P of Etors(Q) are also explicitly presented in each case. These results, together with recent results of K. Ono, completely solve the pro...
متن کامل